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ADAPTIVE FREQUENCY-DOMAIN
REFERENCE NOISE CANCELLER FOR
MULTICARRIER COMMUNICATIONS
SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/287,577, filed Oct. 10, 2008, assigned U.S. Pat. No.
8,605,837, which is hereby incorporated by reference in its
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a multi-carrier commu-
nication system and, in particular, to noise cancellation in a
multi-carrier communication system.

2. Background Art

A multi-carrier communication system, such as a Discrete
Multi-Tone (DMT) system in the various types of Digital
Subscriber Line (DSL), for example, asymmetric digital sub-
scriber line (ADSL) and very high-speed digital subscriber
line (VDSL) systems, carries an information bit stream from
a transmitter to a receiver. The information bit stream is
typically converted into a sequence of data symbols having a
number of tones. Each tone may be a group of one or more
frequencies defined by a center frequency and a set band-
width. The tones are also commonly referred to as sub-carri-
ers or sub-channels. Each tone acts as a separate communi-
cation channel to carry information between a local
transmitter-receiver (transceiver) device and a remote trans-
ceiver device.

BRIEF SUMMARY OF THE INVENTION

FIG. 1 is a block diagram illustrating a conventional DMT
receiver. A channel equalizer is used to control the spread of
the data symbols after going through the channel A cyclic
prefix (CP) may be employed in such systems to simplify
channel equalization to minimize a source of cross channel
interference. Generally, if the length of the channel impulse
response is equal to or less than the cyclic prefix length plus
one sample, then channel equalization is trivial and perfect
equalization can be achieved. The channel can be inverted in
the frequency domain after a discrete Fourier transform
(DFT) by a single complex multiply for each sub-channel.
This is usually referred to as frequency-domain equalization
(FEQ).

On transmission lines in DMT communication systems,
such as ADSL or VDSL, the data signal is generally transmit-
ted differentially. Interference such as radio-frequency inter-
ference (RFI), crosstalk and impulse noise electromagneti-
cally couples into both the common mode and the differential
mode of such transmission lines. In the case of a binder
containing multiple transmission lines, such interference may
couple into some or all of the transmission line in the binder
and such noise may be correlated between lines.

Conventional techniques for reducing differential noise,
thereby improving data rates over the DSL, include use of
common-mode information. In a traditional DSL system, the
common-mode voltage is measured, an estimate of the dif-
ferential-mode interference is constructed and the interfer-
ence estimate is subtracted from the desired signal.

Traditional cancellation may occur in the time-domain or
the frequency domain. For example, frequency bands con-
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2

taining RFI are band-pass filtered and then subtracted from
the differential-mode signal in the time domain. In the fre-
quency domain, a small set of frequency bins are used to
compute and remove an estimate of RFI on a larger number of
data carrying frequency bins. Other conventional systems
cancel crosstalk in both the time domain and the frequency
domain by solving a specific set of equations.

However, there are significant drawbacks associated with
filtering and subtracting an interference estimate in the time-
domain. For example, training and updating the noise estima-
tion unit is difficult, especially in the presence of a data signal.
Furthermore, time-domain subtraction tends to result in noise
enhancement. A reduction in the power spectral density
(PSD) of the interference may be achieved over parts of the
frequency band where the interference is strongest, but inter-
ference PSD enhancement may occur in other frequency
regions, resulting in sub-optimal system performance.

Known frequency-domain techniques also have significant
limitations. Common-mode interference may not be limited
to crosstalk or RFI alone, but may be a combination of the
two. There may also be wideband noise from sources other
than radio transmitters (RFD or other communications sys-
tems (crosstalk) that is correlated between the common and
differential modes. Conventional solutions are suited to target
only crosstalk or RFI; not both. Also, the interference sources
and their associated coupling transfer functions will, in gen-
eral, change over time. Known cancellers do not have the
ability to adapt to these changing conditions in the presence of
the data signal. Furthermore, in a practical implementation,
there are complications and difficulties associated with the
dynamic range of both the differential-mode and common-
mode signals. In implementations in which the multi-carrier
communications system is an ADSL or VDSL system, there
may be further complications involving interaction of the
canceller with On-Line Reconfiguration (OLR), Seamless
Rate Adaptation (SRA), and bitswap as defined in the various
ADSL and VDSL standards. During such events the trans-
mitted power and/or the constellation size changes for one or
more sub-carriers.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings.

FIG. 1 is a block diagram illustrating a conventional DMT
receiver.

FIG. 2 is a block diagram illustrating an embodiment of a
discrete multi-tone system.

FIG. 3 is a block diagram illustrating one embodiment of a
receiver having an adaptive frequency-domain reference
noise canceller.

FIG. 4 is a block diagram illustrating an alternative
embodiment of a receiver having an adaptive frequency-do-
main reference noise canceller.

FIG. 5 is a block diagram illustrating a second alternative
embodiment of a receiver having an adaptive frequency-do-
main reference noise canceller.

FIG. 6 is a flow chart illustrating one embodiment of an
interference cancellation method.

FIG. 7 is a flow chart illustrating one embodiment of a
block alignment adjustment method.

FIG. 8 is a block diagram illustrating one embodiment of a
block aligner.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous specific details are
set forth, such as examples of specific commands, named
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components, connections, number of frames, etc., in order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the
present invention may be practiced without these specific
details. In other instances, well known components or meth-
ods have not been described in detail but rather in a block
diagram in order to avoid unnecessarily obscuring the present
invention. Thus, the specific details set forth are merely exem-
plary. The specific details may be varied from and still be
contemplated to be within the scope of the present invention.

Some portions of the description that follow are presented
in terms of algorithms and symbolic representations of opera-
tions on data that may be stored within a memory and oper-
ated on by a processor. These algorithmic descriptions and
representations are the means used by those skilled in the art
to effectively convey their work. An algorithm is generally
conceived to be a self-consistent sequence of acts leading to a
desired result. The acts are those requiring manipulation of
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
parameters, or the like.

The following detailed description includes several mod-
ules, which will be described below. These modules may be
implemented by hardware components, such as logic, or may
be embodied in machine-executable instructions, which may
be used to cause a general-purpose or special-purpose pro-
cessor programmed with the instructions to perform the
operations described herein. Alternatively, the operations
may be performed by a combination of hardware and soft-
ware.

Embodiments of a method and apparatus are described to
cancel interference in a multi-carrier communications sys-
tem. In one embodiment, a data signal and a reference signal
are received at a receiver. The reference signal is obtained by
measuring a common-mode or differential-mode voltage. A
block aligner is used to align data blocks in the data and
reference signals to increase cross-correlation between the
data signal and the reference signal as compared to the
unaligned data and reference signals. The aligned time-do-
main signals are transformed to the frequency-domain where
interference cancellation occurs. A tone-by-tone canceller
includes a decision feedback mechanism to adapt the cancel-
ler under changing conditions in the presence of the data
signal in the frequency-domain.

FIG. 2 is a block diagram illustrating an embodiment of a
discrete multi-tone system. The discrete multi-tone system
200, such as a Digital Subscriber Line (DSL) based network,
may have two or more transceivers 202 and 204, such as a
DSL modem in a set top box. In one embodiment, the set top
box may be a stand-alone DS modem. In one embodiment,
for example, the set top box employs a DSL modem along
with other media components to combine television (Internet
Protocol TV or satellite) with broadband content from the
Internet to bring the airwaves and the Internet to an end user’s
TV set. Multiple carrier communication channels may com-
municate a signal to a residential home. The home may have
a home network, such as an Ethernet. The home network may
either use the multiple carrier communication signal directly,
or convert the data from the multiple carrier communication
signal. The set top box may also include, for example, an
integrated Satellite and Digital Television Receiver, High-
Definition Digital Video Recorder, Digital Media Server and
other components.
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The first transceiver 202, such as a Discrete Multi-Tone
transmitter, transmits and receives communication signals
from the second transceiver 204 over a transmission medium
206, such as a telephone line. Other devices such as telephone
208 may also connect to this transmission medium 206. An
isolating filter 210 generally exists between the telephone 208
and the transmission medium 206. A training period occurs
when initially establishing communications between the first
transceiver 202 and a second transceiver 204.

The discrete multi-tone system 200 may include a central
office, multiple distribution points, and multiple end users.
The central office may contain the first transceiver 202 that
communicates with the second transceiver 204 at an end
user’s location.

Each transmitter portion 217, 219 of the transceivers 202,
204, respectively, may transmit data over a number of mutu-
ally independent sub-channels i.e., tones. Ina DMT commu-
nication system, data samples on each tone are represented as
one of a set of finite number of points in a two-dimensional
(2D) Quadrature Amplitude Modulation (QAM) constella-
tion. The transmitted data in a multi-carrier system is usually
represented by a point from a constellation of a finite set of
possible data points, regularly distributed over a two dimen-
sional space. Each sub-channel carries only a certain portion
of'data through QAM of the sub-carrier. The number of infor-
mation bits loaded on each tone and the size of corresponding
QAM constellation may potentially vary from one tone to
another and depend generally on the relative power of signal
and noise at the receiver. When the characteristics of signal
and noise are known for all tones, a bit-loading algorithm may
determine the optimal distribution of data bits and signal
power amongst sub-channels. Thus, a transmitter portion
217, 219 of the transceivers 202, 204 modulates each sub-
carrier with a data point in a QAM constellation.

It should be noted that embodiments of the present inven-
tion are described below in reference to receiver 316, which
represents one embodiment of receiver 216, for ease of dis-
cussion, and that receiver 218 may operate in a similar man-
ner as described below for receiver 316.

FIG. 3 is a block diagram illustrating one embodiment of a
receiver having an adaptive frequency-domain reference
noise canceller. In this embodiment, receiver 316 includes
time domain filtering modules 321, 322, block aligner 323,
cyclic extension (CE) removal and serial-to-parallel module
324, sample drop and serial-to-parallel module 325, fast Fou-
rier transform (FFT) modules 326, 327, channel flattening
frequency-domain equalizer (CF-FEQ) module 328, bin
power normalization module 329, adders 330, 333, interfer-
ence estimator module 331, gain inversion and constellation
scaling (GICS) module 332, and constellation decision logic
module 334. Additional modules and functionality may exist
in the receiver 316 that are not illustrated so as not to obscure
an understanding of embodiments of the present invention. It
should be noted that the operations of one or more modules
may be incorporated into or integrated with other modules.

In one embodiment, receiver 316 is implemented ina DMT
communications system operating over a twisted-pair com-
munications channel. N is a variable representing the number
of tones used in the multi-carrier communication receiver.
The communications system may operate in the presence of
RFI, crosstalk and other interference. In this embodiment,
received samples of a differential-mode primary data signal
sent over the twisted pair are provided to a first time-domain
filtering module 321. Additionally, a sampled reference sig-
nal is received and provided to a second time-domain filtering
module 322. The reference signal is obtained by sampling the
common-mode signal of the same twisted-pair as the primary
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data signal. In an alternative embodiment, the reference sig-
nal is obtained by sampling the differential mode interference
from a second twisted-pair that is not used for data transmis-
sion. In another alternative embodiment, the primary data
signal is obtained by sampling the differential voltage of a
copper pair in a twisted copper quad and the reference signal
is obtained by sampling the differential-mode interference
from the other two wires of the twisted quad.

In this embodiment, receiver 316 is configured to operate
independently of the source of the reference signal. A data
signal and a reference signal are received and undergo digital
time-domain filtering at modules 321 and 322 respectively.
Receiver 316 further includes a block aligner module 323.
Block aligner module 323 adjusts the relative alignment of
the 2N-sample blocks of the primary data signal and the
reference signal as needed. The block aligner module 323
may be implemented with sample-dropping capability, by
programming delay First in, First out (FIFO) buffers, or by
adjusting the group delay of programmable finite impulse
response (FIR) filters. The block aligner module 323 aligns
the blocks such that the cross correlation of the reference
signal and the primary line interference signal is increased as
compared to the cross correlation of the unaligned data and
reference signals. For example, the increase in cross-correla-
tion may be in a range of approximately 50 percent to over an
order of magnitude. In one embodiment, the blocks are
aligned such that the cross-correlation is maximized. Block
aligner module 323 will be described further below, with
respect to FIG. 8.

A first output of block aligner module 323 provides the
aligned data signal to cyclic extension (CE) removal and
serial-to-parallel module 324. A second output of block
aligner module 323 provides the aligned reference signal to
sample drop and serial-to-parallel module 325. Modules 324
and 325 serve to remove samples corresponding to any cyclic
extension that may have been added to the data stream at the
transmitter as well as convert the serial sample stream in to
chunks which may be operated on in parallel.

The data signal and reference signal undergo 2N-point
discrete Fourier transforms (DFT). In this embodiment, the
DFT is computed efficiently by means of a fast Fourier trans-
form (FFT) at FFT modules 326 and 327. The time-domain
samples of both the data signal and the reference signal are
provided to FFT modules 326 and 327 which convert the
samples into frequency-domain symbols to be used by the
canceller.

The output of FFT module 326 for the data signal is sent to
a channel flattening frequency-domain equalizer (CF-FEQ)
module 328. The CF-FEQ module normalizes the phase and
power on each frequency bin of the data signal. Ina traditional
DMT system, at the output of the FFT, each frequency bin of
the data signal undergoes an FEQ multiply that inverts the
channel attenuation and phase rotation, inverts the fine gain
adjustment value assigned to the bin, and adjusts for the
constellation size. The result is such that the FEQ output is
scaled to an integer grid for decoding. In this embodiment of
the present invention, the traditional FEQ is split into a CF-
FEQ module 328 and a gain inversion and constellation scal-
ing (GICS) module 332. The two stage approach allows the
data signal from the output of FFT module 326 to be normal-
ized for computationally efficient removal of interference
using integer arithmetic. It also decouples on-line reconfigu-
ration (OLR), seamless rate adaptation (SRA) and bitswap
from the reference noise canceller. That is, the reference noise
canceller taps do not need to change during or after such an
event.
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The output of FFT module 327 for the reference signal
undergoes a scaling stage in which the power on each fre-
quency bin of the reference signal is normalized. The bin-
power normalization module 329 receives the output of FFT
module 327 and corrects amplitude and phase distortion in
the reference signal. The bin-power normalization module
329 produces a normalized reference channel output signal
Yref.

The normalized reference channel output signal Yref is
provided to an interference estimator module 331. Interfer-
ence estimator module 331 multiplies the reference signal
Yref by a single complex tap for each frequency bin thus
forming an estimate of the interference in the differential-
mode signal for each bin. This estimate is subtracted from the
normalized primary channel output signal Y provided by the
CF-FEQ module 328. The subtraction is performed by adder
330 and results in a canceller output signal Yc. The canceller
output signal Yc is provided to an input of the GICS module
332.

GIGS module 332 adjusts the signal for per-bin gain and
constellation size. The GIGS module 332 produces an output
signal. Xhat which is provided to an input of a constellation
decision logic module 334. In the constellation decision logic
module 334, the signal Xhat undergoes constellation decod-
ing where constellation decisions are formed. The constella-
tion decision logic module 334 may include a trellis decoder
or a simple un-coded constellation decoder or slicer. Constel-
lation decision logic module 334 produces a constellation
decision signal X. The constellation decision signal X is
subtracted from the GICS module output signal Xhat to form
a decision error estimate E. The subtraction is performed by
adder 333. The decision error estimate E is used to adaptively
update the canceller taps in the interference estimator module
331. In one embodiment, a least-mean-square (LMS) algo-
rithm is used to update the taps. In alternative embodiments,
other algorithms may be used to update the taps such as a
recursive least square (RLS) algorithm, a gradient computa-
tion, or other algorithm. The structure of receiver 316 allows
the canceller to adapt under changing conditions, such as
interference sources and their associated coupling transfer
functions, and effectively cancel interference in the presence
of the actual data signal.

FIG. 4 is a block diagram illustrating an alternative
embodiment of a receiver 416 having an adaptive frequency-
domain reference noise canceller. In this embodiment, the
CF-FEQ module 328 of FIG. 3 is removed and the GIGS
module 332 of FIG. 3 is replaced with FEQ module 435. FEQ
module 435 receives the canceller output signal Yc at an input
and provides the decoder input signal Xhat to constellation
decision logic module 334. The canceller output signal Yc is
obtained by subtracting the interference estimate directly
from the primary channel output Y of FFT module 326. The
reference signal is processed in the same manner as described
above with respect to FIG. 3.

FIG. 5 is a block diagram illustrating a second alternative
embodiment of a receiver having an adaptive frequency-do-
main reference noise canceller. In this embodiment, the CF-
FEQ module 328 of FIG. 3 is replaced with FEQ module 536
and GICS module 332 of FIG. 3 is removed. FEQ module 536
receives the output of FFT module 326 at an input and pro-
vides an FEQ output signal Y to adder 330. Bin power nor-
malization module 329 of FIG. 3 has also been removed in
this embodiment. The reference channel output Yref of the
FFT module 327 is directly multiplied by a single complex
tap to form an interference estimate at interference estimator
module 331. The interference estimate is subtracted from the
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FEQ output signal Y at adder 330 and the canceller output Y
is provided directly to the constellation decision logic module
334.

FIG. 6 is a flow chart illustrating one embodiment of an
interference cancellation method 600. The process 600 may
be performed by processing logic that comprises hardware,
firmware, software, or a combination thereof. In one embodi-
ment, process 600 is performed by the receiver 316 of F1G. 3.

Referring to FIG. 6, interference cancellation method 600
reduces the interference in a data signal in a multi-carrier
communications system. At block 610, method 600 aligns
data blocks from a received data signal and a reference signal
to increase cross correlation between the data signal and the
reference signal as compared to the unaligned data and ref-
erence signals. The block alignment process will be discussed
further below with respect to FIG. 7.

At block 620, method 600 drops unneeded samples corre-
sponding to the cyclic extension of the data signal from the
aligned data and reference signals. Method 600 also removes
any cyclic extension that may have been added to the data
stream at the transmitter as well as converts the serial sample
stream in to chunks which may be operated on in parallel. At
block 630, method 600 transforms the data and reference
signals from the time-domain to the frequency-domain. The
transformation may be accomplished with the use of a dis-
crete Fourier transform (DFT). In one embodiment, the DFT
is performed by FFT modules 326 and 327 of FIG. 3.

At block 640, method 600 normalizes the power on each
frequency bin of the data and reference signals. Method 600
corrects any amplitude and phase distortion in the signal to
enable efficient noise cancellation. At block 650, the data
signal undergoes a constellation decision logic stage where
constellation decisions are formed. The output of the constel-
lation decision logic is subtracted from the input to form an
error estimate. The error estimate is used to adaptively update
canceller taps at block 660. In one embodiment, a least-mean-
square (LMS) algorithm is used to update the taps. In alter-
native embodiments, other algorithms may be used to update
the taps such as a recursive least square (RLS) algorithm, a
gradient computation, or other algorithm.

At block 670, method 600 multiplies the transformed ref-
erence signal by a single complex tap for each of one or more
frequency bins of the reference signal. The multiplication
results in an estimate of the interference in the data signal. At
block 680, method 600 subtracts the interference estimate
from the data signal. The subtraction results in a canceller
output signal which is then applied to an input the constella-
tion decision logic and method 600 continues at block 650
with the new input. In this manner, method 600 is able to
adaptively update the interference canceller with an interfer-
ence estimate to cancel changing sources of interference dur-
ing data transmission.

FIG. 7 is a flow chart illustrating one embodiment of a
block alignment adjustment method 700. The process 700
may be performed by processing logic that comprises hard-
ware, firmware, software, or a combination thereof. In one
embodiment, process 700 is performed by the block aligner
323 of FIG. 3.

Referring to FIG. 7, block alignment adjustment method
700 enables alignment of data blocks from at least a received
data signal and a reference signal to increase cross correlation
between the data signal and the reference signal as compared
to the unaligned data and reference signals. Alignment of the
data blocks allows for the canceller to achieve optimal noise
cancellation. At block 710, method 700 sets the block align-
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ment to a default value. In one embodiment, the default value
may be zero offset in both the data signal and the reference
signal.

At block 720, method 700 collects 2N time-domain
samples from each of the time domain signal and the refer-
ence signal. In one embodiment, the collection of each of the
two sets of 2N samples begins at the same absolute time. This
results in the 2N-sample blocks of the data signal and refer-
ence signal being roughly-aligned.

At block 730, method 700 performs cross-correlation of
the data and reference signals and computes a peak offset
value. Block alignment fine tuning is performed by using the
cross-correlation of the interference on the data and reference
signals. The measurement occurs when the data signal is not
present, such as before modem training commences or at a
time during modem training when the far-end transmitter is
quiet. After dual 2N-sample blocks are captured at block 720,
the cross correlation is computed as

eI =ZY [i] %o 4] (6]

where y is a block of 2N samples from the data signal in the
time-domain during a quiet period, y,,is the corresponding
block of 2N samples from the reference signal in the time-
domain during the same time period, n is the peak offset
between the data and reference signals and j is a counting
index. The offset is found by determining the values of n for
which the cross correlation (y*y,,J[n] is greater than when
there is no offset (i.e. n=0). In one embodiment method 700
may determine the value of n for which the cross correlation
is a maximum. A range of values for n may result in increased
cross correlation, however as the values become nearer the
value which results in maximum cross-correlation, the effi-
ciency of the interference cancelling increases. Method 700
selects one value of n to use as the offset in the block aligner.

At block 740, method 700 makes a determination as to
whether the selected value of n is greater or less than zero. If
n is greater than zero, method 700 proceeds to block 750. At
block 750, method 700 adjusts the block alignment by the
offset n samples. In one embodiment, method 700 increases
the delay in the data signal by n samples and in an alternative
embodiment, method 700 decreases the delay in the reference
signal by n samples. If n is less than zero, method 700 pro-
ceeds to block 760. At block 760, method 700 adjusts the
block alignment by the offset, n samples. In one embodiment,
method 700 increases the delay in the reference signal by (-n)
samples and in an alternative embodiment, method 700
decreases the delay in the data signal by (-n) samples. After
the block alignment has been adjusted at either block 750 or
760, method 600 ends.

FIG. 8 is a block diagram illustrating one embodiment of a
block aligner 823. The block aligner 823 includes two
D-sample delay FIFO buftfers 883, 893. A first FIFO buffer
883 is in the primary data signal path and a second FIFO
buffer 893 is in the reference signal path. If the delay through
both time-domain filtering blocks 321, 322 is equivalent, and
the Serial-to-Parallel blocks 324, 325 are synchronized such
that sample collection for each block begins at the same time
on both channels, then the block aligner 823 in this form
allows for a plus or minus D-sample fine-tuning delay adjust-
ment between the primary and reference paths. In an alterna-
tive embodiment, finite impulse response (FIR) filters are
used in place of FIFO buffers 883, 893. Block aligner 823
aligns the blocks of the data and reference signals such that
there is an increase in the cross-correlation between the data
signal and the reference signal as compared to the unaligned
data and reference signals.
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In one embodiment, the methods described above may be
embodied onto a machine-readable medium. A machine-
readable medium includes any mechanism that provides (e.g.,
stores and/or transmits) information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
medium includes read only memory (ROM); random access
memory (RAM); magnetic disk storage media; optical stor-
age media; flash memory devices; DVD’s, or any type of
media suitable for storing electronic instructions. The infor-
mation representing the apparatuses and/or methods stored
on the machine-readable medium may be used in the process
of creating the apparatuses and/or methods described herein.

While some specific embodiments of the invention have
been shown the invention is not to be limited to these embodi-
ments. The invention is to be understood as not limited by the
specific embodiments described herein, but only by the scope
of the appended claims.

What is claimed is:

1. A block aligner for aligning a data block in a data signal
with a data block in a reference signal, the block aligner
comprising:

a first buffer configured to:

receive the data signal,

initiate a first tuning on the data signal ifa delay between
the data signal and the reference signal is equivalent;
and

a second buftfer configured to:
receive the reference signal, and
initiate a second tuning on the reference signal if the

delay between the data signal and the reference signal
is equivalent.

2. The block aligner of claim 1, wherein the first buffer and
the second buffer are first-in-first-out (FIFO) buffers.

3. The block aligner of claim 1, wherein the first buffer and
the second buffer are D-sample delay FIFO buffers.

4. The block aligner of claim 1, wherein the first buffer is
configured to initiate the first tuning on the data signal to
change a cross-correlation between the data signal and the
reference signal.

5. The block aligner of claim 1, wherein the second buffer
is configured to initiate the second tuning on the reference
signal to change a cross-correlation between the data signal
and the reference signal.

6. The block aligner of claim 1, further comprising:

afirsttime domain filtering block coupled to the first buffer,
wherein the first time domain filtering block is config-
ured to send the data signal to the first buffer; and

a second time domain filtering block coupled to the second
buffer, wherein the second time domain filtering block is
configured to send the reference signal to the second
buffer.

7. The block aligner of claim 1, further comprising:

a first serial-to-parallel block coupled to the first buffer,
wherein the first buffer is further configured to send a
tuned data signal to the first serial-to-parallel block; and

a second serial-to-parallel block coupled to the second
buffer, wherein the second buffer is further configured to
send a tuned reference signal to the second serial-to-
parallel block.

8. The block aligner of claim 7, wherein the first serial-to-
parallel block and the second serial-to-parallel block are syn-
chronized such that sample collection of the first serial-to-
parallel block and the second serial-to-parallel block begins
at a same time.

9. The block aligner of claim 1, wherein the first buffer is
further configured to:
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initiate cancelling interference in the data signal based on
the first tuning.

10. The block aligner of claim 1, wherein the second buffer

is further configured to:
initiate cancelling interference in the reference signal
based on the second tuning.
11. A block alignment adjustment method, comprising:
collecting, using a receiver device, a plurality of first
samples from a data signal;
collecting, using the receiver device, a plurality of second
samples from a reference signal;
cross-correlating, using the receiver device, the plurality of
first samples and the plurality of second samples; and
cancelling, using the receiver device, interference in the
plurality of first samples and the plurality of second
samples by tuning the plurality of first samples and the
plurality of second samples based on the cross-correlat-
ing.
12. The block alignment adjustment method of claim 11,
wherein the plurality of first samples and the plurality of
second samples are collected simultaneously.
13. The block alignment adjustment method of claim 11,
further comprising:
computing a peak offset value based on the cross-correlat-
ing.
14. An apparatus, comprising:
a receiver configured to receive a plurality of first samples
from a data signal and a plurality of second samples from
a reference signal; and
a block aligner, coupled to the receiver, configured to:
cross-correlate the plurality of first samples and the plu-
rality of second samples, and

cancel interference in the plurality of first samples and
the plurality of second samples by tuning the plurality
of first samples and the plurality of second samples
based on the cross-correlated plurality of first samples
and plurality of second samples.

15. The apparatus of claim 14, wherein the plurality of first
samples and the plurality of second samples are collected
simultaneously.

16. The apparatus of claim 14, wherein the block aligner is
further configured to compute a peak offset value based on the
cross-correlating.

17. The apparatus of claim 14, further comprising:

a first buffer configured to initiate a first tuning on the data
signal if a delay between the data signal and the refer-
ence signal is equivalent; and

a second buffer configured to initiate a second tuning on the
reference signal if the delay between the data signal and
the reference signal is equivalent.

18. The apparatus of claim 17, wherein the first buffer is
configured to initiate the first tuning on the data signal to
change a cross-correlation between the data signal and the
reference signal.

19. The apparatus of claim 17, wherein the second buffer is
configured to initiate the second tuning on the reference sig-
nal to change a cross-correlation between the data signal and
the reference signal.

20. The apparatus of claim 14, wherein the block aligner is
further configured to align the plurality of first samples and
the plurality of second samples such that cross-correlation
between the plurality of first samples and the plurality of
second samples is maximized.

#* #* #* #* #*
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